Standard Test Method for
Gel Time and Peak Exothermic Temperature of Reacting
Thermosetting Resins

This standard is issued under the fixed designation D 2471; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope *

1.1 This test method covers the determination of the time
from the initial mixing of the reactants of a thermosetting
plastic composition to the time when solidification com-
mences, under conditions approximating the conditions of use.
This test method also provides a means for measuring the
maximum temperature reached by a reacting thermosetting
plastic composition, as well as the time from initial mixing to
the time when this peak exothermic temperature is reached.
This test method is limited to reacting mixtures exhibiting gel
times greater than 5 min.

1.2 The values stated in either SI units or inch-pound units
are to be regarded separately as standard. The values stated in
each system may not be exact equivalents; therefore, each
system shall be used independently of the other. Combining
values from the two systems may result in nonconformance
with this test method.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

1.4 This test method applies to adhesives, caulks, sealants,
encapsulating and potting compounds, and similar materials, as
described in Table 1.

Note 1—There is no similar or equivalent ISO standard.

2. Referenced Documents

2.1 ASTM Standards:
D 883 Terminology Relating to Plastics
E 1 Specification for ASTM Thermometers

3. Terminology

3.1 Definitions:
3.1.1 General—Definitions of plastics terms used in this
test method are in accordance with Terminology D 883.

4. Significance and Use

4.1 Since the gel time and the peak exothermic temperature
of a reacting thermosetting plastic composition vary with the
volume of material mixed at one time, it is essential that the
volume be specified in any determination. By selection of an
appropriate volume, gel time and peak exothermic data may be
obtained in sufficiently precise and reproducible form or
application evaluation, quality control, and material character-
ization of a thermosetting plastic composition. For most
meaningful results, the cross sectional area of the material
being examined, as well as other conditions of testing, should
approximate as closely as possible the conditions of use of the
material.

4.2 This test method is operator-dependent since it is simple
to perform. It is of value for determining conditions required to
produce an end product.

5. Apparatus

5.1 Sample Containers, to contain a volume of reacting
thermosetting plastic in a cross sectional area representative of
the conditions of application of the material. Suggested con-
tainers are the following:
5.1.1 Aluminum Foil Dish, approximately 7 cm (2.75 in.)
in diameter and 1.4 cm (0.56 in.) deep.
5.1.2 Paint Can, open-top, ¼-pt, approximately 6.00 cm
(2.375 in.) in diameter by 5.00 cm (2 in.) deep.
5.1.3 Paint Can, open-top, 1-pt, approximately 8.2 cm (3.25
in.) in diameter by 9.5 cm (3.75 in.) deep.
5.2 Wooden Probe—Applicator sticks approximately 0.24
cm (0.09 in.) in diameter by 15.2 cm (6.00 in.) long have been
found satisfactory.
5.3 Nonconducting Surface, such as dry wood or corrugated
casing.
5.4 Temperature Measuring Devices:
5.4.1 Any temperature recorder or indicator utilizing ex-
pendable thermocouples and accurate to approximately ±1 %
of scale is adequate for all but the most precise characterizing
tests.

Note 2—Previous versions of this test method have contained a
paragraph detailing the possible use of a thermometer for temperature
determination. Use of a thermometer is no longer recommended due to
potential hazard of breakage as well as loss of the thermometer due to
imbedment in the curing mass.

*A Summary of Changes section appears at the end of this standard.

Copyright © ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.
5.5 Temperature-Controlled Bath, capable of holding the temperature within ±0.1°C.

5.6 Stop Watch.

6. Conditioning

6.1 Place all components in suitable containers in the temperature-controlled bath at the test temperature for at least 4 h prior to being tested, or for however much longer time is needed for all parts of the sample to reach the test temperature within 0.5°C (1.0°F). Condition all containers and probes to be used in the test at the test temperature at the same time.

6.2 If experience has shown that less than 4 h conditioning is required for all parts of the sample to reach the test temperature, report the time of conditioning.

7. Procedure

7.1 When all components have reached the test temperature (Note 2), agitate each component slowly and separately with a stirring rod or mixing paddle for at least 3 min, avoiding the entrapment of air.

Note 3—The test temperature shall be 23.0 ± 1.0°C (73.4 ± 1.8°F), unless otherwise specified.

7.2 Combine the components in the recommended ratio to provide a convenient working quantity.

Note 4—For accurate measurements of quantities of components, individual components should be weighed, using the specific gravities of the respective components to determine the weights needed to make up the required volume.

Note 5—Table 1 lists suggested test volumes and working volumes for materials to be used in various applications.

7.3 Start the stop watch, and mix the components thoroughly for 3 min, avoiding air entrapment by slow agitation with a stirring rod or mixing paddle. To avoid transfer of heat, do not hold the container by hand during the mixing operation. Record the start of mixing as the “starting time.”

7.4 Transfer the appropriate test volume (see Note 4) of the mixed components immediately to an appropriate sample container which has been previously conditioned at the test temperature.

7.5 Place the sample container on a nonconducting surface in still air at the test temperature.

Note 6—If it is desirable, because of the nature of the application, to use a conducting surface of high heat capacity instead of a nonconducting surface, include a description of the surface in the report. If, because of the nature of an application, it becomes desirable to measure gel time and peak exothermic temperature in a temperature-controlled bath, the conditions used must be noted in the report. Warning—Gel times and peak exothermic temperatures observed in a temperature-controlled bath are functions of the total system, including the quantity and nature of the coolant, as well as the nature of all components inserted into the bath. These properties are not functions of the resincuring agent system alone.

7.6 Insert a thermocouple, or other temperature-measuring device, into the geometric center of the reacting mass, and record the observed temperature changes to the end of the test.

7.7 Every 15 s, probe the center surface of the reacting mass, with the applicator stick perpendicular to the material surface.

Note 7—Use of a mechanical gel time meter is feasible in the larger sample sizes. However, the results obtained with the various mechanical gel time meters have not been consistent with results obtained with hand probing. If a mechanical gel time meter is used, include this information in the report.

7.8 When the reacting material no longer adheres to the end of a clean probe, record the “gel time” as the elapsed time from the start of mixing.

7.9 Continue recording the time and temperature until the temperature starts to drop. Record the highest temperature reached as the “peak exothermic temperature.” Record the “peak exothermic time” as the elapsed time from the start of mixing.

8. Report

8.1 Report the following information:

8.1.1 Identification of the thermosetting plastic composition being tested,

8.1.2 Time of conditioning, if less than 4 h,

8.1.3 Method of mixing (by hand or mechanical mixer),

8.1.4 Volume of sample tested,

8.1.5 Thickness of sample tested,

8.1.6 Test temperature, to the nearest 1°C (or 2°F),

8.1.7 Gel time, to the nearest 0.5 min,

8.1.8 Peak exothermic temperature, to the nearest 1°C (or 2°F), and

8.1.9 Peak exothermic time, to the nearest 1 min.

9. Precision and Bias

9.1 The operator-dependent nature of this test method does not lend itself to a meaningful development of a precision statement. In addition, the small number of laboratories using

<table>
<thead>
<tr>
<th>Application</th>
<th>Test Volume</th>
<th>Working Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin-section applications, adhesives, tooling surface coats, dip coatings, laminating materials, impregnants, caulking and sealing compounds</td>
<td>15 mL (0.5 fluid oz) in aluminum foil dish</td>
<td>60 mL (2 fluid oz)</td>
</tr>
<tr>
<td>Surface-casting systems, larger-volume encapsulating, and potting compounds</td>
<td>45 mL (1.5 fluid oz) in aluminum foil dish</td>
<td>90 mL (3 fluid oz)</td>
</tr>
<tr>
<td>Laminating materials, surface-casting systems</td>
<td>120 mL (4 fluid oz) in ¼-pt can</td>
<td>150 mL (5 fluid oz)</td>
</tr>
<tr>
<td>Mass-casting systems, potting compounds, quality control of any material normally mixed and used in this quantity</td>
<td>415 mL (14 fluid oz) (weighed directly into sample container) in 1-pt can</td>
<td>415 mL (14 fluid oz)</td>
</tr>
</tbody>
</table>
this test method also precludes attempting to develop such a statement.

9.2 There are no standard reference materials upon which to base an estimate of bias for this test method.

10. Keywords

10.1 caulks; gel time; peak exothermic temperature; resin, thermosetting; sealants

SUMMARY OF CHANGES

This section identifies the location of selected changes to this test method. For the convenience of the user, Committee D-20 has highlighted those changes that may impact the use of this test method. This section also may include descriptions of the changes or reasons for the changes, or both.

D 2471–99:

(1) Editorially changed scope for clarification.

(2) Added summary of changes section.

(3) Changed SI units statement.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).